首页>教育 > 正文

歌德巴赫猜想(什么是歌德巴赫猜想?)

2023-03-16 17:38:22    出处:热点网

很多小伙伴想了解歌德巴赫猜想的相关知识,今天小编专门整理了歌德巴赫猜想的内容介绍,让我们一起看看吧。

本文目录一览:


【资料图】

1、哥德巴赫猜想?2、什么是歌德巴赫猜想?3、“哥德巴赫猜想”是什么?

哥德巴赫猜想?

哥德巴赫1742年在给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。

内容拓展:

哥德巴赫自己无法证明这个猜想,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。

因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。(n5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)。

欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。

1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

什么是歌德巴赫猜想?

1742年,歌德巴赫发现每个不小于6的偶数都是两个素数(只能被它本身整除的数)之和。如6=3+3,12=5+7,等等。

1742年6月7日,歌德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:a任何一个大于等于6之偶数,都可以表示成两个奇质数之和;b任何一个大于等于9之奇数,都可以表示成三个奇质数之和。

这就是歌德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉都不能证明,这引起了许多数学家的注意。至今,许多数学家仍在努力攻克它,但都没有成功。曾经有人做了具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7……有人对33×108以内且大过6之偶数一一进行验算,歌德巴赫猜想a都成立。但严格的数学证明尚待数学家们继续努力。

“哥德巴赫猜想”是什么?

哥德巴赫 - 哥德巴赫猜想

内容

1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了以下的猜想:  (a) 任何一个≥6的偶数,都可以表示成两个奇质数之和。

(b) 任何一个≥9的奇数,都可以表示成三个奇质数之和。这就是所谓的哥德巴赫猜想。

在信中他写道:“我的问题是这样的:

随便取某一个奇数,比如77,可以把它写成三个素数之和:

77=53+17+7;

再任取一个奇数,比如461,

461=449+7+5,

也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于9的奇数都是三个素数之和。

但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。”

欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。

同时欧拉又提出了此一猜想可以有另一个等价的版本:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。

哥德巴赫猜想最初的内容也可表述为:

任一大于5的整数都可写成三个质数之和。

而今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个质数之和。

事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。

但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。

进展

哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年 苏联数学家 维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。

考虑把偶数表示为两数之和,而每一个数又是若干素数之积。把命题"任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"(即"任何一个大偶数都可以表示成为一个素因子个数不超过1个的数与另一个素因子不超过1个的数之和")成立。1966年 陈景润证明了"1+2"成立,即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。

以上就是小编对歌德巴赫猜想的相关信息分享,希望能对大家有所帮助。

关键词:

相关内容

消费
产业
电信诈骗威胁快递用户利益,注意冒充顺丰诈骗很有必要 电信诈骗作为信息化的一个副产品,对国人利益的威胁日益加重,在快递行业就有突出体现。
高合汽车匠心设计豪华纯电超跑GT,为用户提供高端个性化选择 在电动化、智能化的汽车时代,有越来越多自主品牌依靠优秀的产品在目标市场实现快速崛
贝壳:“一体两翼”品质升级,打造美好新居住 为品质人居筑梦,承载美好生活,对企业来说,既是使命,也是责任。近日,贝壳找房正式
贝壳:“一体两翼”品质升级,打造美好新居住 为品质人居筑梦,承载美好生活,对企业来说,既是使命,也是责任。近日,贝壳找房正式
基金